MINI MED SCHOOL

Talk 8: How to avoid a drug interaction

JULIA DE PIERI, BSCHK, UBC MD CLASS OF 2024

TERRITORIAL ACKNOWLEDGEMENT

I would like to begin by acknowledging that I am joining you from the unceded territory of the Coast Salish Peoples, including the territories of the xwməθkwəỷəm (Musqueam), Skwxwú7mesh (Squamish), Stó:lō and Səlílwətaʔ/Selilwitulh (Tsleil- Waututh) Nations.

I would also like to acknowledge the Lekwungen peoples on whose traditional territory the University of Victoria stands and the Songhees, Esquimalt and Wsanec peoples whose historical relationships with the land continue to this day.

DISCLOSURE

I am a medical student. These talks do not constitute or substitute for medical advice.

Please consult with your healthcare provider or pharmacist if you have questions about your specific health situation.

TOPICS

- Pharmacodynamic interactions
 - Additive or antagonistic
- Pharmacokinetic interactions
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
- Drug-Food and Drug-Disease interactions

True or False: When my doctor asks which medications I'm on, they only really want to know my prescription medications.

- A. True
- B. False

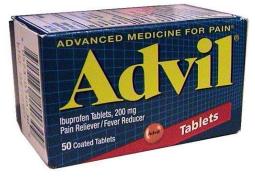
True or False: When my doctor asks which medications I'm on, they only really want to know my prescription medications.

- A. True
- B. False

ADDITIVE INTERACTIONS

• Taking two or more medications that have similar effects □ get heightened effect □ potentially toxic at higher doses if done unintentionally or produce unwanted side effects

- Simple examples:
 - Acetaminophen/Tylenol + other cold & flu medications (i.e., Nyquil)

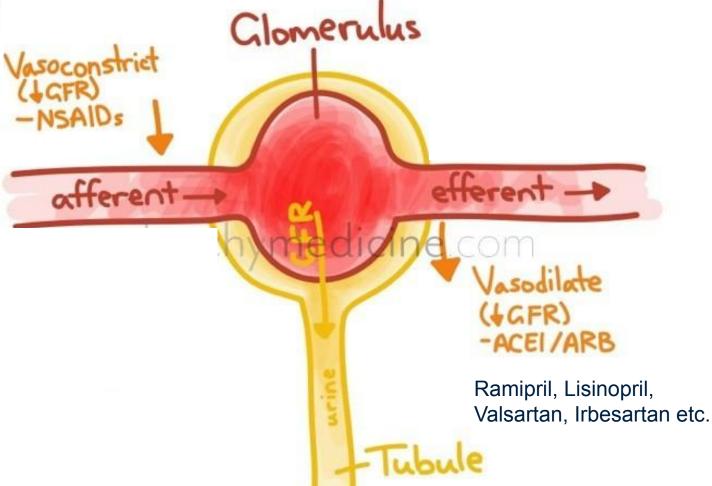


NSAIDS + LOTS OF THINGS

- Used for pain relief
- Additive
 - If combined with anti-depressants (citalopram, fluoxetine, sertraline etc.) or glucocorticoids □ increased risk of bleeding

- Antagonistic
 - If combined with aspirin □ increased cardiac risk in coronary heart disease patients

ACE-INHIBITORS + LOTS OF THINGS


- Additive
 - If combined with potassium-sparing diuretics (spironolactone or amiloride) □ elevated potassium

- Antagonistic
 - If combined with NSAIDs □ reduced effects and risks of acute kidney injury.

SEROTONIN SYNDROME

- When two medications are added that both elevate serotonin
 can achieve super high levels of serotonin, leading to serotonin
 syndrome
- Examples: anti-depressants (SSRI or SNRIs), bupropion, opioids, anti-migraine medication, anti-nausea medications, herbal supplements etc.
- Mild symptoms: agitation, insomnia, confusion, shivering etc.
- Severe symptoms: fever, tremor, seizures, irregular heartbeat

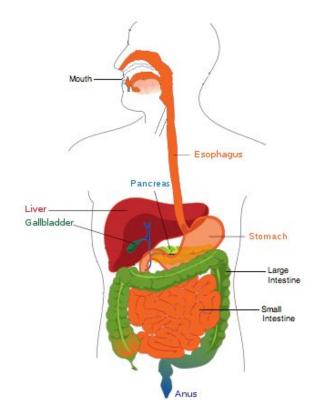
TABLE 1

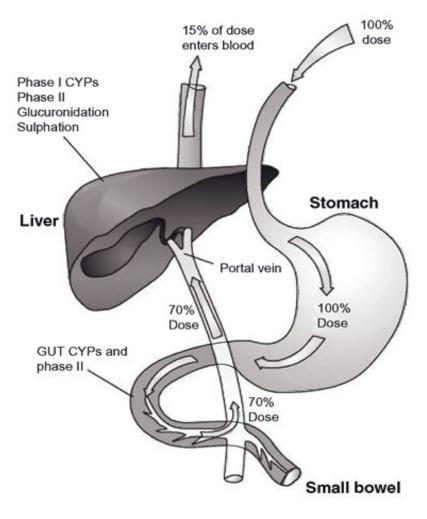
Examples of typical additive and antagonistic pharmacodynamic interactions

Substance I	Substance II	Possible effect	
Additive interactions			
NSAIDs	SSRI, phenprocoumon	Increased risk of bleeding	
NSAIDs	Glucocorticoids	Increased risk of gastric bleeding	
ACE inhibitors	Spironolactone, amiloride	Hyperkalemia	
SSRIs	Triptans	Serotonin syndrome	
Tricyclic antidepres- sants	Low-potency neuroleptics	Increased anticholinergic effects	
Quinolones	Macrolides, citalopram	QT-interval prolongation, torsade de pointes	
Antagonistic interact	ions		
Acetylsalicylic acid	Ibuprofen	Reduced effects	
ACE inhibitors	NSAIDs	Reduced effects	
Levodopa	Classical neuroleptics	Reduced effects	
Phenprocoumon	Vitamin K	Reduced effects	

SSRI, selective serotonin reuptake inhibitor; NSAID, nonsteroidal anti-inflammatory drug

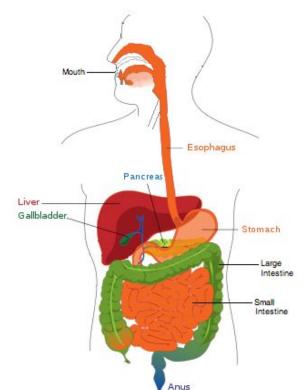
DRUG METABOLISM: ADME


UBC


- ABSORPTION
- DISTRIBUTION
- METABOLISM
- EXCRETION

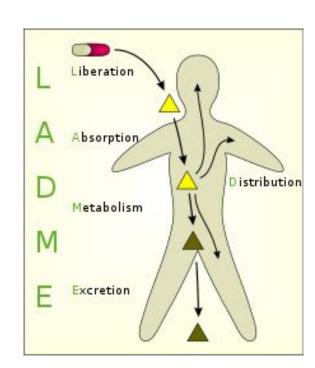
PATH OF AN ORAL MEDICATION

- Mouth
- Stomach
 - Potential modifiers: acid
- Small Intestine
 - Potential modifiers: transporters
- Liver
 - Potential modifiers: enzymes, other medications, disease
 - "First pass metabolism" □ drug concentrations reduced at the liver



PATH OF AN ORAL MEDICATION

- Blood
 - Potential modifiers: plasma proteins
- Target organs


- Once inactive:
- Removed via the kidneys □ urine
- OR via the liver □ bile □ feces

DRUG METABOLISM: ADME

- Absorption: How the drug gets into the body
 - Mainly through digestive tract (except intravenous (IV)
 - Important for oral medication
 - Changes in stomach pH can alter absorption
 - Certain medications can increase or reduce the bioavailability of other medications through modifying p-glycoproteins

True or False: TUMS and other anti-acids are harmless

- A. True
- B. False

True or False: TUMS and other anti-acids are harmless

- A. True
- B. False

TUMS (CALCIUM CARBONATE)

UBC

- TUMS neutralizes stomach acid □ alters the way medications are processed in the stomach
 - May decrease the bioavailability of medication (decreased effect)
 - May bind and form complexes with the medication

 □ medication can't go on and exert its effect

Recommendation: Take only as needed, and at least 2 hours before or after taking other medications

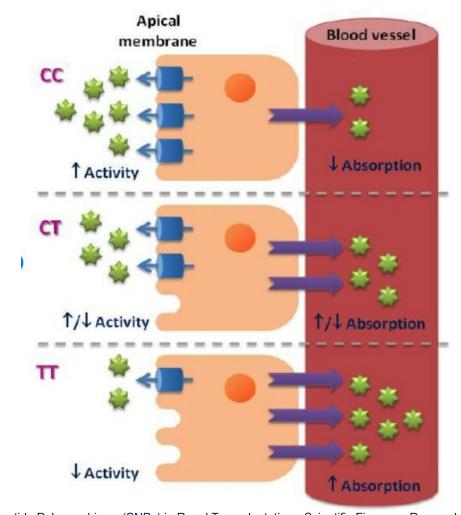
P-glycoproteins are transporters in the gut that control how much drug is absorbed.

 Inducers of P-glycoprotein decreases the absorption/effect of a drug

- Inhibitors of P-glycoprotein increases the absorption/effect of a drug
- Substrates are medications that are especially reliant on this pump

TABLE 2

Examples of interactions at the intestinal absorption level: selection of relevant substrates, inducers, and inhibitors of P-glycoprotein (ABCB1)


Group	Substance	
Substrates		
Opioids	Loperamide, morphine	
Antihypertensives	Aliskiren, carvedilol	
Anticoagulants	Dabigatran	
Cardiac glycosides	Digoxin	
Immunosuppressants	Ciclosporin, tacrolimus, sirolimus	
Protease inhibitors	Indinavir, saquinavir	
Statins	Atorvastatin, lovastatin, simvastatin	
Antineoplastic agents	Paclitaxel, anthracyclines, vinca alkaloids, etoposide imatinib	
Inducers		
Anticonvulsants	Carbamazepine (oxcarbazepine less so), phenytoin, phenobarbital, primidone	
Tuberculostatics	Rifampicin	
Antiretroviral	Efavirenz	
St. John's wort extract	Hyperforin	
Inhibitors		
Antimycotics	Itraconazole, ketoconazole	
Calcium channel blockers	Diltiazem; felodipine; nicardipine; nifedipine; verapamil especially	
Macrolide antibiotics	Erythromycin, clarithromycin, not azithromycin	
HIV protease inhibitors	Indinavir; nelfinavir; ritonavir especially; saquinavir	

Ciclosporin

Amiodarone, quinidine, propafenone

Inducers

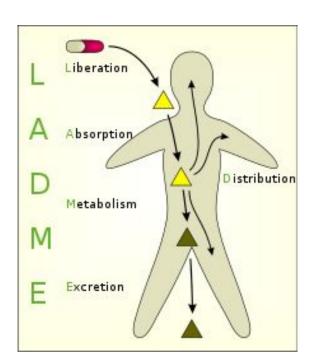
Inhibitors

ST. JOHN'S WORT

 A five-petal flower that was originally used to prevent demonic possession and "evil spirits"

- Now claimed to help as an anti-depressant and possess potential anti-inflammatory or wound healing properties
 - Limited evidence in humans

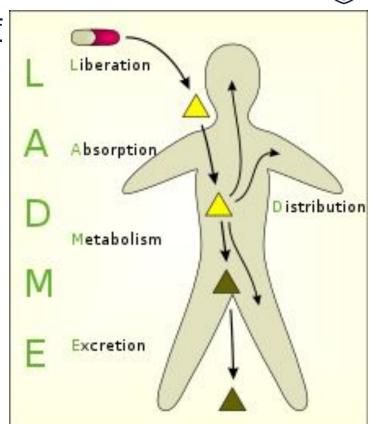
SEVERAL medication interactions



DRUG METABOLISM: ADME

- Distribution: how the drug leaves the bloodstream and gets to the tissues
 - Not a big issue for drug interactions
 - Protein binding will deactivate most drugs

 May be an issue with situations of fluid overload □ end-stage liver disease, heart failure, end-stage kidney disease etc.

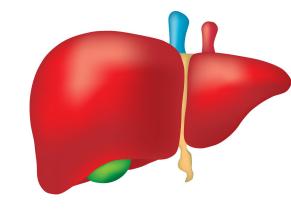


DRUG METABOLISM: ADME

- Metabolism: irreversible transformation of drug "first-pass metabolism"
- Mainly in the liver
 - Phase 1: Cytochrome P450 enzymes
 - Phase 2: Non-P450 enzymes
- Doesn't apply to intravenous medications

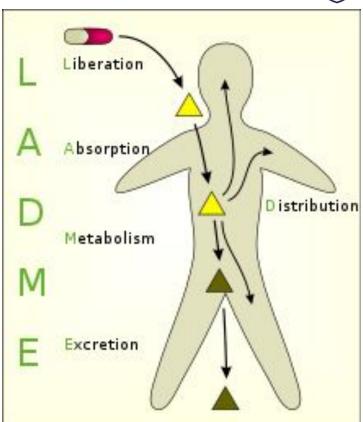
BIG area for interactions

TABLE 4

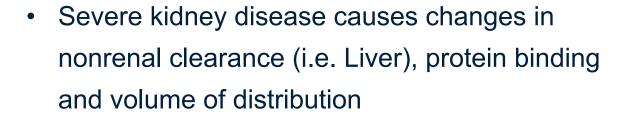

(P1A2	CYP2C9	CYP2C19	CYP2D6	CYP3A4/5
nhibitors				
Fluoroquinolones Ciprofloxacin ++ Ofloxacin Levofloxacin Miscellaneous Amiodarone Cimetidine + Fluvoxamine ++ Ticlopidine	Amiodarone + Fluconazole ++ Isoniazide	Fluoxetine Fluoxamine PPIs Lansoprazole + Omeprazole + Miscellaneous Ketoconazole Ticlopidine	Duloxetin + Fluoxetine ++ Paroxetine ++ Miscellaneous Amiodarone Buproprion Cimetidine Quinidine ++ Chlorphenamine Clomipramine Ritonavir	HIV protease inhibitors Indinavir ++ Nelfinavir ++ Ritonavir ++ Macrolides Clarithromycin ++ Erythromycin + Azole antimycotics Fluconazole + Itraconazole + Voriconazole ++ Voriconazole Miscellaneous Aprepitant +, Amiodarone Cimetidine + Diltiazem Naringin + (in citrus fruits) Verapamil +
Inducers				
Tobacco smoke Omeprazole	Rifampicin		7	Carbamazepine (oxcarbazepine less so) Efavirenz Hyperforin (in St. John's wort) Phenobarbital Phenytoin Rifampicin

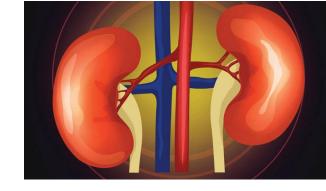
LIVER DISEASE

- Advanced liver disease (cirrhosis) can decrease certain drug metabolizing enzymes and can affect excretion via bile and the kidneys
- Reduced production of plasma proteins (albumin)
 - ☐ more free (active) drug
 - This may lead to drug accumulation □ toxic effects


 It's likely that a decrease in dose is needed for certain medications.

DRUG METABOLISM: ADME




- Excretion: how the drug leaves the body
 - Mostly happens in the kidneys
 - Implications for kidney disease
 - Can also be excreted through bile
 - ☐ feces

KIDNEY DISEASE

 Similar to liver disease, any issues in excreting a drug may increase the drug levels in the body, especially those dependent on kidney metabolism

BREAK TIME!

DRUG-FOOD INTERACTIONS

GRAPEFRUIT (JUICE)

Blocks the action of CYP3A4 enzyme in the liver
 potential for drug accumulation and more side
 effects/toxicity

- Particularly for:
 - Statins (i.e. Simvastatin, atorvastatin)
 - Calcium channel blockers (i.e. Nifedipine)
 - Immunosuppressants (i.e. Cyclosporine)

ALCOHOL

Alcohol IS a drug

 depresses the central nervous system

Can magnify side effects i.e. Drowsiness

- Can affect liver enzymes
 - Lowers the toxic threshold of Tylenol

WARFARIN AND VITAMIN K

Lots of drug-drug interactions

- Acts by inhibiting vitamin K reductase
 - Vitamin K found in some foods □ cancels out warfarin

Be wary of multivitamins □ may contain vitamin
 K

LICORICE

- Eating 2 ounces a day for over 2 weeks can lead to an arrhythmia!
- Contains glycyrrhizin

 lowers potassium

- Low potassium can be life-threatening □
 abnormal heart rhythms, hypertension, swelling,

 lethargy and congestive heart failure
- Try to avoid if taking medications that also lower potassium (i.e. diuretics)

POTASSIUM

- Elevated potassium (hyperkalemia) can be a side effect of many common medications
 - ACE-Inhibitors (ramipril, lisinopril etc.)
 - Angiotensin 2 receptor blockers (valsartan etc.)
 - NSAIDs (ibuprofen, naproxen)
 - Immunosuppressants (cyclosporine, tacrolimus)

 Important to have electrolytes checked, especially when first starting a medication. If high potassium is an issue □ change medication or reduce foods

Woman's 150 tea bag per day habit lead to bone disease, her doctors say

BY RYAN JASLOW

MARCH 22, 2013 / 3:37 PM / CBS NEWS

GREEN TEA

- Interacts in a few ways:
- Contains caffeine □ certain medications decrease metabolism of caffeine □ You might feel a bit jittery
- Green tea and green tea extract □ Can decrease absorption and bioavailability of certain drugs
 - Atorvastatin (Lipitor), lisinopril, cancer medications, blood thinners etc..

DRUG-DISEASE INTERACTIONS

BETA-BLOCKERS + ASTHMA

- Beta blockers (metoprolol, labetalol etc.) work by blocking beta receptors throughout the body
 decreased heart rate, contractility, lower blood pressure
- Asthma medications help widen the airways and reduce inflammation by binding beta receptors

- If you take beta-blockers and have asthma □ your asthma will get worse
 - Usually contraindicated

NASAL DECONGESTANTS

- Significant drug-disease interaction for those with cardiovascular disease
- Work by vasoconstricting the vessels in the nasal mucosa

 reduced congestion

- BUT some medication can go systemically
 - Narrowing of other vessels (i.e.. Coronary vessels) □ NOT GOOD

True or False: There's a website that my doctor can check which medications I'm on, so it's okay if I forget to mention some.

- A. True
- B. False
- C. It depends

True or False: There's a website that my doctor can check which medications I'm on, so it's okay if I forget to mention some.

- A. True
- B. False
- C. It depends

PHARMANET

 A website where physicians and pharmacists in BC can look up which medications you're on.

- Doesn't include:
 - Over-the-counter medications (unless prescribed)
 - Supplements, vitamins, herbal remedies
 - Medications you received as a sample from the doctor
 - Prescriptions you haven't filled
 - Any prescriptions filled outside BC
 - Medications dispensed by certain agencies i.e. BC Cancer

TIPS TO AVOID A DRUG INTERACTION

- 1) Make a list of your medications and take it with you to appointments.
- 2) Stick to one pharmacy if you can.
- 3) Inform your primary care provider of any new medication, supplement, vitamin, herbal remedy that you are taking.

- 5) Make sure your medications are properly labelled. Daily pill containers can help, or you can ask for blister packing at the pharmacy.
- 6) Read the inserts that are given with new medications.
- 7) If you're having trouble taking oral medications, ask your doctor/pharmacist for alternatives.
- 8) If in doubt, ASK!

HELPFUL RESOURCES

Your healthcare provider or pharmacist! Ask for a full medication review.

- Health Link BC or 811
- Health Gateway
- Drug interaction checkers:
- https://www.drugs.com/drug_interactions.html

FUTURE TALKS

Sunday Feb 20: Supplements

We hope to see you there!

THE UNIVERSITY OF BRITISH COLUMBIA

Thank you!

Any questions?